
Linear Regression
Before reading this blog post, please read the post on Introduction to Machine Learning.

Straight line with minimal error
We will look at the linear regression algorithm, which is one of the oldest and popular supervised
learning algorithms. In supervised learning, we are trying to approximate the given input and
output data with a function which represents its relationship. In the case of linear regression, the
function is going to be a straight line.

We will look at the example of an online company predicting their revenue from the ad spend
based on historical data.

https://vmayakumar.wordpress.com/2024/01/02/introduction-to-machine-learning

If we graph the above data using a scatter plot, we get,

As I mentioned earlier, in the case of linear regression, we use a straight line function to
approximate the data points. But we can draw infinite straight lines in the above chart.
So, how do we pick 1 straight line which does the best approximation of the data points
from the infinite number of straight lines which can be possibly drawn?

What if we pick a line, which gives the lowest error between the given output values and
the predicted output values by our straight line.

Equation of a straight line
While studying mathematics in school, we would have studied linear equations which
provides the equation for a straight line. The most common form is the slope-intercept
equation of a straight line:

where m is the slope (or) average rate of change. To compute average rate of change
(or) slope between 2 points, we need to compute rise over run (change in y over change
in x):

Slope between 2 points = y2 - y1 / x2 - x1

and b is the y-intercept, which is the value of y where the line crosses the y-axis. All we
need to draw a straight line is m and b.

https://www.mathsisfun.com/algebra/linear-equations.html

In the parlance of machine learning, slope is called weight, y-intercept is called bias.
Using a linear regression algorithm, we need to find appropriate weight and bias, for
which we have minimal error between the predicted value and ground truth.

Mean Square Error function
We need to find the weight and bias for a straight line which gives the lowest error
between the given output value and the predicted output value.

For 1 example, we can compute the error between predicted output and ground truth
as:

Error = Predicted value - Ground truth
Error = (w0 + w1 x1) - Ground truth

Since we will have m examples, we need to compute the error for all the examples. If
some errors are +ve and some errors are -ve, we don't want them to cancel each other
out. So we would want to square the errors.

(Error)2 = ((w0 + w1 x1) - Ground truth)2

Average Error for m examples is called the Cost function which is called as Mean
Squared Error:

Cost Function (Mean Squared Error) = ((w0 + w1xi) - Ground truth)2 / n
𝑖=1

𝑛

∑

Our optimization function needs to figure out w0,w1where the Cost function is minimum.

Gradient descent of Mean Square Error function
Right now, the cost function has 2 independent variables w0 , w1 and cost function being the
dependent variable. To be able to visualize in a cartesian plot, we will ignore w0. We can see
that the relationship between cost function and w1 is quadratic in nature.

Assume that we pick a random weight, say w1 = -1.0. How do we come up with machine
learning algorithm that should move to the right of w1 at -1.0 all the way closer to 2 and stop
there, so that it yields the value of w1 at which the cost function is at the minimum?

In Calculus, for functions which are continuous and differentiable, we can compute derivatives
which gives us the instantaneous rate of change of a function. Derivatives for a function f(x) at a
given point gives us 2 things: magnitude and direction. By using the magnitude and direction
from the derivative value, we can have the algorithm take the step in the right direction with
precision and speed, which will lead to a point where the cost function is minimum. On top of
functions being continuous and differentiable we would also want the function to be convex
so that if a minimum exists, it will be the global minimum. This algorithm is called gradient
descent. To learn more about Key Ideas of Calculus, please go here.

https://vmayakumar.wordpress.com/2023/10/06/key-ideas-of-calculus/

Now that we understand the gradient descent algorithm, we will also fix the w0 (bias) parameter.
Our line equation was w0 + w1xi , and now the cost function is not a two dimensional curve.
From a line it has become a surface. Fortunately, we can still use the gradient descent algorithm
for a function with multiple variables by applying partial derivatives. Using partial derivatives,
you take each variable and assume that it is the only variable in the cost function and all other
variables are constant. So, when we take the partial derivative of cost function w.r.t w1, then w0

is constant and similarly when we take the partial derivative of cost function w.r.t w0, then w1 is
constant

Cost Function or J(w) = ((w0 + w1xi) - Ground truth)2) / n(
𝑖=1

𝑛

∑

Partial Derivative of J(w1) w.r.t w1 = (2 ((w0 + w1x1(i))) * x1(i)) / n
𝑖=1

𝑛

∑

Partial Derivative of J(w0) w.r.t w0 = (2 ((w0 + w1x1(i)))) / n
𝑖=1

𝑛

∑

If we take closer attention between the partial derivative of cost function w.r.t w1 and partial
derivative of cost function w.r.t w0 the only difference is x0(i) is missing in the derivative of cost
function w.r.t bias function. For bias, If we treat x0(i) = 1 as a special case, then there is no
difference between the two partial derivatives.

In our current example, we had one feature “Ad Spend” but in real world machine learning
problems, we will end up having many thousands of features. To solve this, we will be using
multiple linear regression.

Our function will be, w0x0+ w1xi+ w2x2+ w3x3 …..+ wmxmwhere w0 is for bias and x0 = 1.

Cost Function = ((w0x0(i) + w1x1(i)+ w2x2(i) + ... + wmxm(i)) - Ground truth)2) / n(
𝑖=1

𝑛

∑

Partial Derivative = (2 ((w0x0(i+ w1x1(i) + ... + wmxm(i)) - Ground truth) * xm(i)) / n
𝑖=1

𝑛

∑

(J(wm) w.r.t wm)

The derivative can be worked out by knowing the derivatives of a few key functions and
applying the “Chain rule” of Calculus.

Solution
To solve multiple linear regression, all we have to do is compute the partial derivatives for our
cost function w.r.t each of the features and using the magnitude and direction of their
derivative value, we will adjust all the feature’s weights accordingly so that we find the
appropriate weights where the cost function is minimum. The adjustment is made using
learning rate, which will be a small value like 0.1, 0.01, 0.001 etc.,

Partial Derivative = (2 ((w0x0(i+ w1x1(i) + ... + wmxm(i)) - Ground truth) * xm(i)) / n
𝑖=1

𝑛

∑

(J(wm) w.r.t wm)

(Note: we compute partial derivative of cost function w.r.t each of the weights)

To solve the partial derivative, we use matrix operations like matrix multiplications and matrix
transpose. In the case of multiple linear regression, the model equation is given as w0x0+ w1

xi+ w2x2+ w3x3 …..+ wmxmwhere w0 is for bias and x0 = 1 where,

w0 w1 ……wm - Weights of the features
x0 x1 …….xm - Features
yprime - Predicted output

If we have n examples, 1 output per example and m features, we can represent the model
equation using a matrix multiplication:

Examples X Features X Features X Output = Examples X Output
(n X m) (m X 1) (n X 1)

where X represents matrix multiplication

We can use matrix multiplication as shown below while we are computing partial derivatives.

For ex, if we have 5 examples, 3 features(including bias), 1 output, matrix multiplication will be,

yprime - Ground Truth, where yprime is predicted value and the result will also be a 5 x 1 matrix

For the partial derivatives, now we need to multiply xm(i) with yprime - Ground Truth. This is
where we need to transpose the example x features of (n x m) to (m x n). In our example, we
will be transposing our (5 x3) matrix to (3 x 5) matrix. The output is then multiplied by 2 and
divided by the number of examples which will give the magnitude and direction for the partial
derivative of the cost function w.r.t each of the weights which will help us to reach the
destination where the cost function is minimum.

We will adjust all the weights together and will perform this step for i iterations. At the end of the
iterations, the adjusted weights are considered to be the ones, where the cost function is
minimum.

Conclusion
In this post, we covered Linear regression which is one of the most popular supervised learning
models. Next up, we will look into another popular supervised learning model, which is Logistic
Regression, which is used when we need to categorize a set of things.

References
Programming Machine Learning : From Coding to Deep Learning
Linear Regression

https://vmayakumar.wordpress.com/2024/01/02/logistic-regression
https://vmayakumar.wordpress.com/2024/01/02/logistic-regression
https://www.amazon.com/Programming-Machine-Learning-Zero-Deep/dp/1680506609
https://www.adit.io/posts/2016-02-20-Linear-Regression-in-Pictures.html

